\addtolength\textwidth0mm\addtolength\hoffset0mm\addtolength\textheight0mm\addtolength\voffset0mm\global\long\global\long\global\long\global\long\global\long\global\long\global\long\global\long\global\long\global\long\global\long\global\long\global\long\global\long\global\long\global\long\global\long\global\long\global\long\global\long\global\long\global\long\global\long\global\long\global\long\global\long\global\long\global\long\global\long\global\long\global\long\global\long\global\long\global\long\global\long\global\long\global\long\global\long\global\long\global\long\global\long\global\long\global\long\global\long\global\long\global\long\global\long\global\long\global\long\global\long\global\long\global\long\global\long\global\long\global\long\global\long\global\long\global\long\global\long\global\long\global\long\global\long\global\long\global\long\global\long\global\long\global\long\global\long\global\long\global\long\global\long\global\long\global\long\global\long\global\long\global\long\global\long\global\long\global\long\global\long\global\long\global\long\global\long\global\long\global\long\global\long\global\long\global\long\global\long\global\long\global\long\global\long\global\long\global\long\global\long\global\long\global\long\global\long\global\long\global\long\global\long\global\long\global\long\global\long

9 – Aut | Fundamental domain


Denote by D the complete set of
reps. of cong. classes of chambers of Nef(X)PS obtained by the Borcherds’ method.

If AutH(D) is trivial for all DD then

DDD is a fundamental domain of the action of Aut(X) onto Nef(X)PS.